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1. Abstract 
The western United States has experienced twenty years of increased and prolonged drought which have 
exacerbated wildfire hazards. These jeopardize population centers through increased risks to ecosystem 
services, local economies, and livelihoods. The Idaho Office of Emergency Management, Water Resources, 
and Department of Lands are seeking methods to dynamically monitor these conditions and update models 
that inform hazard mitigation planning and resource allocation. Towards this, these agencies partnered with 
NASA DEVELOP to produce drought-enhanced wildfire hazard models. Part of a two-term project, the two 
teams revised the state’s static wildfire hazard model with refined data layers and remotely-sensed data to 
reflect dynamic ecosystem responses to drought conditions and wildfire potential. Our team distinguished 
between rangeland and forestland ecosystems and investigated relationships between drought metrics and 
vegetation condition using TerrSet Earth Trends Modeler. This analysis determined that total precipitation at 
a 5-month lag interval (r2 = 0.72) along with the Evaporative Stress Index (r2 = 0.69); and precipitation at a 5-
month interval (r2 = 0.42) were important drivers in rangeland and forestland, respectively. These driver 
variables were incorporated into a temporally dynamic wildfire hazard map. Our team used linear regression 
to correlate hazard ratings with wildfire frequency. For the year 2020, neither the enhanced hazard model (p 
< 0.10, r2 = 0.01) nor the state’s static model (p < 0.05, r2 = 0.03) were strongly correlated with actual wildfire 
frequency as they expressed an inverse relationship between wildfire hazard and frequency. This suggests 
wildfire occurrence is complex and not necessarily driven by the variables used.  
 
Key Terms 
wildfire, drought, MODIS, Landsat, hazard management, NDVI, ESI, landscape-scale modeling 
 

2. Introduction 
2.1 Background Information 
Wildfire and drought in the western United States have not only become more frequent but are also 
producing larger wildfires (Weber & Yadav, 2020; Gamelin et al., 2022). An increase in drought typically 
drives a greater incidence of wildfire due to the increase of drying fuels (Riley et al., 2013). In turn, greater 
wildfire occurrence can lead to increased drought through more landscape coverage of wildfire-burned 
environments (Margolis et al., 2011). However, while hotter and drier conditions and wildfire prone 
environments are spatially and temporally related, this relationship is non-linear and complex (Brown et al., 
2022). Variations in fuel and land management, biophysical structure and condition, past disturbance, climatic 
oscillation, and the stochastic nature of ignition all interact to create profound complexity when determining 
drivers of wildfire and drought (Littell et al., 2016; Halofsky et al., 2020; Taylor et al., 2013). As hotter and 
drier conditions persist, informed management is essential to reduce ecosystem vulnerability to large-scale 
wildfire disturbances and threats to human health and population centers interfacing with fire prone 
ecosystems (Prichard et al., 2021; Burke et al., 2021; Wilhite et al., 2014; Xi et al., 2019). Managers need 
improved, scalable, and dynamic models with enough statistical power to reliably predict drought and wildfire 
occurrence and interaction to inform proactive management decisions.  
 
To address this need in the state of Idaho, the summer 2022 NASA DEVELOP team enhanced the Idaho 
Department of Lands (IDL) static wildfire hazard model (SWHM) with remotely sensed drought metrics of 
Evaporative Drought Demand Index (EDDI), Evaporative Stress Index (ESI) and Normalized Difference 
Vegetation Index (NDVI), in an effort to better predict wildfire susceptible conditions in the Palouse Prairie 
ecoregion of north-central Idaho. Using these data, wildfire season (6/1 – 9/30) and growing season (3/1 – 
6/1) baselines were established to temporally constrain functionality within these models. The first term 
incorporated each metric (EDDI, ESI, NDVI) into three separate enhanced versions of the SWHM and 
assessed the efficacy of these drought-enhanced wildfire hazard models (DEWHM) using a confusion matrix 
analysis for dry and wet year case study periods. They compared wildfire burned pixel capture rates between 
the DEWHM and the SWHM. This analysis found that the DEWHM reduced false predictions of wildfire 
through reduced false positives and increased true negatives but were unable to produce increased predictions 
of true wildfire areas and underpredicted areas where wildfire occurred in dry years (Table A1). They 
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hypothesized that this was due to overprediction of the SHWM – a trend potentially indicated in that 
predictions by the SHWM did not change between wet and dry years.  
 
The previous term highlighted avenues where model performance could be enhanced to better reflect 
ecological responses of drought and incorporate these remotely-sensed data to create dynamic modeling 
capacity. The goal for the fall 2022 DEVELOP team was to further explore functionality of these and 
additional drought indicator variables, such as the modified soil-adjusted vegetation index (MSAVI2), in 
improving the SHWM’s performance and dynamic capability, and expand the study area to incorporate the 
entire state of Idaho. The first term analyzed drought and wildfire trends in north central Idaho, an area that 
includes the economically important Palouse Prairie ecoregion and contains a diversity of ecoregions, for the 
years 2013–2021. This term’s team expanded the study area to the entirety of the state of Idaho and 
broadened the study period from 2010–2020 (Figure 1).  
 

 
Figure 1. The state of Idaho with historical fires from 1950–2021 illustrated in red, the Palouse ecoregion case 

study region in hashed blue area, Blaine County case study area bordered in blue, and the state of Idaho 
bordered in gray. 

 
2.2 Project Partners & Objectives 
The project partners were state government land and emergency management personnel within the Idaho 
Department of Water Resources (IDWR), Idaho Department of Lands (IDL) and the Idaho Office of 
Emergency Management (IOEM). These agencies coordinate hazard mitigation decision-making and 
planning with private, local, and federal authorities through the Idaho State Hazard Mitigation Plan (2018). 
This document in part summarizes both the Idaho Statewide Implementation Strategy for the National Fire 
Plan (2006) and the Idaho Drought Plan (2001) and assesses wildfire hazard to guide mitigation approaches 
under the objectives of creating wildfire-resistant and -adapted landscapes, reducing possible ignition and fuel 
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sources (including rehabilitation of invasive species-dominated wildlands), increasing public awareness, and 
reducing risk to human health, lives, property, and natural resources (IOEM, 2018). 
 
These objectives are confounded by challenges associated with the uncertainty of predicting wildfires 
(Pacheco et al., 2015). A pressing concern is how increasing wildfire frequency and size imposes risks to local 
communities (Tedim et al., 2018) from the adverse effects of wildfire smoke on the human respiratory system 
(Reid & Maestas, 2019) and increases of economic and ecological costs associated with damage and recovery 
(Stavros et al., 2014). The partners currently use a SWHM to predict wildfire susceptibility, a capacity that is at 
odds to variable spatiotemporal dynamics intrinsic to wildfire (Linn, 2019) and drought (Diaz et al., 2020) 
conditions. Therefore, the partners are concerned with adapting their monitoring capabilities to gain capacity 
in responding to dynamic conditions as they occur across the state with the goal of effectively allocating 
resources over space and time. To achieve this capacity, the partners wish to incorporate Earth observation 
data of drought conditions into their wildfire hazard modeling for the state of Idaho.  
 
In this study, our team analyzed the relationships between vegetation quality and drought indicators across 
the state of Idaho to identify statistically significant variables for inclusion into a DEWHM. Our team 
incorporated these identified drought-vegetation quality relationships as variables into the SWHM to enhance 
its capacity to produce spatiotemporally dynamic wildfire hazards. We then assessed these DEWHM for their 
efficacy in predicting wildfire frequencies across the state. Our team identified key areas for future research to 
optimize the model’s performance and compiled a detailed tutorial for ArcGIS Pro ModelBuilder for our 
partners to recreate the model and maintain for future use.  
 

3. Methodology 
3.1 Data Acquisition  
This project is a continuation from the summer 2022 term. Preprocessed remotely-sensed data used in this 
study was acquired from the GIS Training and Research Center (GIS TReC) at Idaho State University (ISU). 
The content in this section describes the online sources of data as well as acquisition for ancillary datasets 
used in this study.  
 
The summer 2022 team acquired EDDI: 4-week Daily CONUS 13km data product and ESI: 4-week Daily 
Global 5km data from the National Oceanic and Atmospheric Administration (NOAA) Physical Sciences 
Laboratory (PSL) and the NASA SERVIR Climate SERV Application, respectively, and downloaded these 
for weekly intervals during the study period, 2013–2021. This data was only specific to the Palouse region of 
Idaho. Our team used preprocessed EDDI, ESI, temperature, and precipitation datasets acquired from Keith 
Weber to expand the study area to the entire state of Idaho. 
 
To process MSAVI2, we utilized the previous term’s composited Landsat 8 OLI scenes (covering path 42 
rows 27 and 28 with less than 30% cloud cover) and preprocessed Terra Moderate Resolution Imaging 
Spectroradiometer (MODIS) 16-day 250m data that were clipped to the western United States and projected 
into the USA Contiguous Albers Equal Area Conic (WKID 102039) coordinate system. Most satellite 
products were acquired for the wildfire season (6/1–9/30) and growing season (3/1–6/1) specified by the 
summer 2022 term team. Landsat data was generated using the Earth Explorer website hosted by the USGS 
and later with USGS/EROS Machine-to-Machine API. Keith Weber of ISU provided our team with pre-
processed science-ready MODIS and NOAA datasets for temperature, precipitation, EDDI, NDVI, and ESI. 
The EDDI data was downloaded from NOAA’s Physical Sciences Laboratory while the cumulative 
precipitation and temperature data was downloaded from NOAA’s National Center for Environmental 
Information (NCEI). The ESI data was collected from NASA’s MSFC/SPoRT through SERVIR 
ClimateSERV. Lastly, the NDVI data was collected from MODIS. These data products were used to expand 
resolution of our data to a state-wide study area for the years 2010–2020. Table 1 provides a complete listing 
of Earth observation data used in this study.  
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Our team acquired the most recent version of the SWHM from IDL that was enhanced during this term 
(Figure A1) which included the 2022 Wildland Urban Interface (WUI). We also used high resolution 10-m 
NASA RECOVER products for elevation, slope degrees, and aspect to generate continuous topographic 
data. We also used the Historical Fire Database (HFD) which records the fire occurrence between 1950–2021 
for all federally recognized fires in the Continental United States (Weber, 2020).   
 
A python script that produces an equal interval hexbin layer was executed using an ArcGIS Pro 3.0.1 Jupyter 
notebook (Robertson, 2022). The hex-bin analysis was used to divide the state into 30-km equal area 
hexagonal polygons which reduced sampling bias during the final validation process of the DEWHM. These 
areas allowed our team to generate statistical relationships between enhanced hazard ratings and wildfire 
frequencies and granted the capacity to analyze the entire state of Idaho. Lastly, an Existing Vegetation Type 
(EVT) layer was used to segment the state into forestland or rangeland classifications (LANDFIRE, 2020). 
Table 2 provides a complete listing of ancillary datasets used in this study.   
 
Table 1  
List of NASA sensors and data products utilized for this project 

Platform and Sensor Data Product Dates Acquisition Method 

Landsat 8 OLI 
Landsat 8 Operational Land 
Imager and Thermal Infrared 
Sensor Collection 2 Level-1  

Mar. 1–Sep. 30, 
2013–2021 

Earth Explorer download 
& USGS/EROS 

Machine-to-Machine API 

Aqua/Terra MODIS 

MOD13Q1 v006- 
MODIS/Terra Vegetation 
Indices 16-Day L3 Global 

250m SIN Grid 

Feb. 28–Oct. 3, 
2013–2021 

From Keith Weber, ISU 

 
Table 2 
List of ancillary datasets utilized for this project 

Source Data Product Dates Acquisition Method 

Idaho Department of 
Lands 

Static Wildfire Hazard Model 
(SWHM) 

2022 
Provided by Tyre 

Holfeltz, IDL, with 
permission 

NOAA – PSL 
 

Evaporative Demand Drought Index 
(EDDI): 4-week Daily CONUS 13km 

2013–2021 
 

Downloaded from 
NOAA data archive 

GIS Training and 
Research Center at 

Idaho State University 
and USGS 

 NASA RECOVER value added 
National Elevation Dataset 

2016 

Provided by Keith 
Weber, ISU GIS 

TReC, with 
permission, via NASA 

RECOVER 
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NASA - NCEI 
Monthly Cumulative Precipitation 

Data 
1985–2022 

Provided by Keith 
Weber, ISU GIS 

TReC, with permission 
from Scott Stephens at 

NCEI 

GIS Training and 
Research Center at 

Idaho State University 
Historical Fires Database 1950–2021 

Provided by Keith 
Weber, ISU GIS 

TReC, with permission 

FEMA Hazard 
Mitigation Plan 

Wildland Urban Interface (WUI) 2022 
Provided by Tyre 

Holfeltz, IDL, with 
permission 

NASA MSFC/SPoRT 
Evaporative Stress Index (ESI): 4-

week Daily Global 5km 
2013–2021 

 

SERVIR ClimateSERV 
Application 

LANDFIRE, Earth 
Resources Observation 

and Science Center  

LANDFIRE Existing Vegetation 
Type, Fuel Characteristic 

Classification, Fuel Disturbance 
2020 

Downloaded from 
LANDFIRE archive 

Hex-bin Python Script 

Python code for generating equally 
sized hexagonal polygons across the 
entirety of Idaho for running analysis 

over equal areas 

2022 

Provided by Wilma 
Robertson, ID Info 
Tech Services, with 

permission 

Idaho State Boundary Shapefile of the state of Idaho 2018 

From ISU Center for 
Ecological research 
and Education, via 

Idaho State Tax 
Commission 

US Ecomap 

Feature class containing ecological 
section polygons geographically 

delineating ecological relationships 
into units across the conterminous 

United States 

2007 USDA Forest Service 

 
 
3.2 Data Processing 
The data used in this project was largely preprocessed by the summer team and Keith Weber. Our team 
performed additional processing of this data in ArcGIS Pro before they were ready for analysis. We 
reprojected the data into the USA Contiguous Albers Equal Area Conic USGS coordinate system (WKID 
102039) and resampled each of the raster images into the same pixel size as the SWHM’s 30-m resolution 
using the Project Raster tool. We then clipped the imagery to our Idaho study area using the Clip Raster 
geoprocessing tool before either incorporating this data into the SWHM or exporting each image layer into 
TerrSet. Imagery that was loaded into TerrSet was processed using the CONCAT module to concatenate the 
image layers to the same bounding coordinates for further analysis. 
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The NDVI and ESI data were prepared in ArcGIS Pro before we were able to perform our time series 
analysis in TerrSet. One of the first steps in this process was to use the Clip Rasters tool in batch mode to 
simultaneously clip multiple rasters to the study area at once. This ensured a smooth transition into Terrset by 
removing NoData pixels from our data. From here, the new rasters were reprojected into USA Contiguous 
Albers Equal Area Conic USGS coordinate system (WKID 102039) using the Project Raster geoprocessing 
tool in order to give all the data layers a common spatial reference system. The tool was run using bilinear 
interpolation and lossless compression (LZW) to preserve all raster cell values. Finally, all datasets were 
resampled in order to standardize the spatial resolution of the datasets. Note that the NDVI products were 
transformed into integer space using a scaling factor of 0.001 to reduce of the size of the files and increase 
performance.  
 
The precipitation, maximum temperature, and minimum temperature datasets also needed to be preprocessed 
within ArcGIS Pro in order to import this data to TerrSet for analysis. To accomplish this, the Make 
NetCDF Raster tool and the Export Raster tool was used to save as a permanent TIF. Once complete, these 
TIF files were imported into TerrSet where the GDAL Conversion Utility was used to create one layer per 
band within the TIF file. These raster files were then exported out of TerrSet as TIFs and imported into 
ArcGIS Pro. These TIF files were then clipped and projected using an iterator in ModelBuilder.  
 
Once the spatial resolution and spatial reference system for precipitation, EDDI, ESI, NDVI, and 
temperature datasets were standardized, the data was imported into TerrSet to perform the time series 
analysis. All of the TIF files were stored in separate folders specific to the corresponding dataset which 
enabled raster group files to be easily created in TerrSet. Raster group files are paramount when working with 
hundreds of files in TerrSet because group files allow changes to be made to the entire group. This is a 
significant time-saver considering that TerrSet defaults the reference system to the file name which can easily 
be resolved by creating a raster group file for all files and using the MetaUpdate module to change the 
reference system to plane. After changing the reference system for all of the files within each time series, the 
datasets were ready for analysis in TerrSet.  

       
3.3 Data Analysis 
3.3.1 Drought Indicator Analysis 
Earth Trends Modeler (ETM) in TerrSet provides great utility in assessing relationships between variables and 
determining temporal trends within a time series by enabling the user to analyze copious amounts of 
temporal-sensitive data through a variety of statistical analyses. ETM offers seven types of analyses for a time 
series file and three of which were incorporated for this study. The Series Trend Analysis tool provides a 
variety of statistical measures, such as linear correlation or Mann-Kendall significance, to analyze long-term 
trends. The Seasonal Trend Analysis tool provides great utility for the analysis of seasonal trends since the 
tool begins with an initial stage of harmonic analysis of each year in the time series to extract the annual and 
semi-annual harmonics, which are then analyzed using a robust median-slope procedure (Eastman et al., 
2009). Finally, the Linear Modeling tool is a multiple regression tool developed for analyzing lag relationships 
over time.  
 
Time series groups were created in TerrSet for EDDI, ESI, NDVI, precipitation, and maximum and 
minimum temperature datasets for 2010–2020, which were deseasoned to generate climatology values for 
each time series. Deseasoned datasets are especially useful in determining long-term trends within a time 
series because it removes seasonality by subtracting the climatology value from each image to identify 
anomalies in the data (Weber, 2022). Each time series group were analyzed using the Seasonal Trend Analysis, 
Interannual Trend Analysis, and Linear Modeling tools to explore seasonal and long-term trends within the 
drought-indicators as well as relationships between vegetation health. 
 
To explore long-term trends, our team performed linear correlation on the original and deseasoned time 
series using the Series Trend Analysis tool. Since the data files were comprised of data for the continental 
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United States, a binary mask of the state of Idaho was created so that the analyses would solely run on the 
study area. Following the initial series trend analysis, our team analyzed each dataset using the Seasonal Trend 
Analysis tool which calculates trends in seasonal parameters by modeling each year’s seasonal curve and 
analyzing trends in the mean annual signal, the annual cycle, and the semi-annual cycle (Weber, 2022). The 
outputs from this analysis consisted of a series of Contextual Mann-Kendall (CMK) probability maps and 
significance images as well as composites for the phases and amplitudes of each dataset. Statistically 
significant areas in the composites were then identified by running a logical expression (<=0.05) in the Image 
Calculator module.  
 
To investigate the relationship between the variables and vegetation health and ultimately determine which 
variables would be most effective to incorporate into the DEWHM, each time series was run through the 
Linear Modeling tool. The Linear Modeling tool is useful for identifying independent variables and 
determining their collective effect upon the dependent variable (Weber, 2022). Incorporating time lags into 
the regression analyses can also be especially fruitful for determining when the effect of a driver variable is 
expressed in the dependent variable. Therefore, each variable was tested between 0–5-month time lags.  
 
Following our team’s initial investigation of driver variables in TerrSet and communication with our partners, 
our team used the LANDFIRE Existing Vegetation Type dataset to classify the state into forestland and 
rangeland. We used the vegetation lifeform identifier to classify shrub, herb and sparse categories into 
rangeland and the tree category into forestland. All other categories, e.g., agriculture, barren, developed, 
snow-ice, and water, were considered non-burnable and were not included in this level of analysis.  
 
The Linear Modeling tool was rerun on all drought and vegetation variables using the rangeland and 
forestland as masks in the TerrSet Earth’s Trends Modeler, see Tables B1. Following this regression analysis, 
the forestland mask was further divided into low elevation forestland and high elevation forestland using the 
median elevation within state forestland as a breakpoint, (Figure B1, Table B2).  
 
3.3.2 Wildfire Hazard Modeling 
The SWHM was built in ArcGIS Pro ModelBuilder and incorporated weighted raster layers of landcover, 
topography and wildfire history to produce a summed hazard value for the entire state (Table 3). At its core 
functionality, this model employs the Raster Calculator geoprocessing tool using simple addition of the 
weighted input rasters to generate summed scores which are then classified into a quintile-based wildfire 
hazard with the Reclassify tool (Figure A1). 
 
To enhance this schema, our team incorporated remotely sensed drought and vegetation metrics found to be 
significant in our ETM analysis. These metrics were reclassified (Table 4) and were input in the Raster 
Calculator geoprocessing tool at the core of the SWHM’s functionality. These inputs augmented the scoring 
used in the SWHM to produce hazard ratings. Ratings were created that tracked with variations that occurred 
within these remotely sensed conditions and mirror variations in vegetation condition and drought as they 
changed on the ground. 
  
Table 3 
Classification scheme of static variables weights, as specified, within the drought-enhanced wildfire hazard model. Column headers 
indicate given values used. N refers to aspect North, E to aspect East, S to aspect South, and W to aspect West. The columns 0-
6 indicate the weight assigned to the value ranges listed in each row of the column. 

Variable 0 1 2 3 4 5 6 

Slope (degrees) -  0–10  10–20  > 20  - - - 

Aspect (degrees) Flat 
N (0–45, 315–

360) 
E (45–135) S, W (135–315) - - - 
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Burn density 
(acres/acre) 

0 0–0.5 0.5–1.0 > 1.0 - - - 

WUI - Is not WUI - Is WUI - - - 

Vegetation Class 
(Forestland) 

- Grass Grass-Tree Grass-Shrub Shrub 
Shrub
-Tree 

Tree 

Vegetation Class 
(Rangeland) 

- Shrub Grass-Shrub Grass-Tree Grass - - 

 
 
Table 4 
Classification scheme of remotely-sensed variables as incorporated within the drought-enhanced wildfire hazard model.  

Earth Observation 
Data 

 
Variable Determinations 

Evaporative Stress 
Index 

Given 
Weight 

-6 -4 -2 1 2 4 6 

Class 
-100 – 
5.00 

-4.99 – 
-3.00 

-2.99 –    
-0.5 

-0.49 – 
0.49 

0.50 – 
2.99 

3.00 – 
4.99 

5 – 100 

Normalized 
Difference 

Vegetation Index 

Given 
Weight 

1 2 3 4 5 6 - 

Class < 0 
0 - 

1999 
2000 – 
3999 

4000 – 
5999 

6000 – 
7999 

8000 – 
10000 

- 

Precipitation 

Given 
Weight 

0 1 3 4 - - - 

Class < 0 0 – 49 50 – 100 
101 – 
1000 

- - - 

 
Within the classification schemes of Table 4, ESI used standard deviations above and below to represent 
xeric and mesic conditions, respectively, such that xeric ESI values increased a pixel potential to burn while 
mesic values reduced them. The introduction of NDVI further compounded this scoring method by 
operating as a metric of fuel loading, with differences in peak growing and peak dormancy vegetation periods 
being expressed as approximate fuel accumulation, doubling in weight to mirror fuel increase. Precipitation 
quantified total rainfall, adding no value at pixels where no rainfall occurred and increasing with pixel 
saturation. 
 
3.3.2 Wildfire Hazard Model Validation 
To assess predictive efficacy of the DEWHM, our team performed regression analysis to explore 
relationships of our final wildfire hazard outputs with wildfire occurrence. This was accomplished by using 
the hexbin layer as the input raster in the Zonal Statistics as Table geoprocessing tool in ArcGIS Pro, which 
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enabled statistics to be generated for 30-km equal area hexagons. Segmenting this validation process in this 
way reduced sampling bias. The mean hazard rating and the area burned within each hexagon were calculated 
and regression analysis was performed on those results to determine how well the DEWHM predicted 
wildfires that had occurred.  
 
All statistical data, for each hexbin, were generated by the Zonal Statistics as Table geoprocessing tool. These 
data were input into R Studio, where our team performed regression analysis. Regression analysis utilized the 
mean wildfire hazard rating from the output models and the sum wildfire frequency, wildfire area and lack of 
wildfire occurrence. The DEWHM was validated for the years 2018 and 2020 as well as IDL’s 2022 SWHM, 
for comparative purposes.  

4. Results & Discussion 
4.1 Analysis of Results 
4.1.1 ETM Analysis 
ETM analysis in TerrSet allowed our team to explore trends and compare various environmental parameters 
and Earth observation data to determine which of these datasets are the strongest predictor of vegetative 
health. The Series Trend Analysis tool, which investigates long-term trends, produced weak results for all 
datasets when running linear correlation, with the highest r2 value 0.25 for maximum temperature (Table 1C). 
Rerunning the analysis on the deseasoned datasets produced an r2 value of 0.42 for NDVI and 0.25 for 
minimum and maximum temperature.  
 
The initial regression analysis for the entire state, using the Linear Modeling tool and vegetative health as the 
dependent variable, produced the strongest r2 result for ESI at 0.69 closely followed by precipitation at a 3-
month time lag of 0.68 (Table 2C). Interestingly, precipitation was the only variable to benefit from applying a 
time lag, likely a by-product of the temporal aspect of hydrological flow through ecosystems. After classifying 
the state into rangeland and forestland, linear modeling was repeated; ESI still showed a strong correlation of 
0.69 for the rangeland mask but dropped to 0.29 for the forestland mask. Additionally, results indicated that 
precipitation provided utility for both rangeland and forestland masks. Precipitation at a 5-month lag 
produced an r2 value of 0.72 for rangeland and a r2 value of 0.51 at a 4-month lag and 0.42 at a 5-month lag 
for forestland (Tables B1). 
 
The results from running the Earth Trends Modeler Linear Modeling tool on the high and low elevation 
forestland masks produced results that varied only slightly when compared to the initial forestland mask, so 
variable selection for the DEWHM were based on the results from the Linear Modeling regression analysis 
for the original forestland and rangeland masks. 
  
4.1.2 Drought-Enhanced Wildfire Hazard Model 
After the data layers were selected and loaded into ArcGIS Pro, ModelBuilder was used to create the 
DEWHM (Figure A2). In terms of dynamic performance, incorporation of drought-enhancements 
introduced greater intra-annual temporal variability (Figure A3). The DEWHM predicted wildfire conditions 
differently than the SWHM (Table 7). Unenhanced, the SWHM maintained a high degree of statistical 
confidence but low explanatory power in predicting wildfire frequency (p < 0.05, r2 = 0.03) and wildfire 
absence (p = 0.001, r2 = 0.04). The SWHM also predicted poorly for wildfire size (p = 0.780, r2 = 0.02). The 
DEWHM had variable performance, but remained uniformly reduced in terms of both explanatory and 
statistical power for wildfire frequency for the year 2020 (p = 0.090, r2 = 0.01) and 2018 (p = 0.440, r2 = 2.0E-
3) and wildfire absence for the year 2020 (p = 0.033, r2 = 0.02) and 2018 (p = 0.41, r2 = 2.0E-3). However, for 
the year 2018, the DEWHM vastly increased the statistical performance of the model for predicting wildfire 
size (p = 0.050) compared with the SWHM (p = 0.780) and the 2020 DEWHM (p = 0.700). All models had 
negative model coefficients associated with wildfire frequency and wildfire size, and all models had positive 
model coefficients associated with wildfire absence.  
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Table 7 
Results from analyzing the mean wildfire hazard rating and corresponding wildfire frequency using regression analysis in R 
Studio 
 

 Wildfire Size Wildfire Frequency No Wildfire Occurrence 

Model P-value R-value coefficient P-value R-value coefficient P-value R-value coefficient 

SWHM 
0.780 0.02 -1E-05 0.003 0.03 -0.44 0.001 0.04 0.52 

DEWHM 
2018 0.050 0.01 -3E-06 0.440 2.0E-3 -0.09 0.410 2.0E-3 0.11 

DEWHM 
2020 

0.700 5.0E-04 2.6E-06 0.090 0.01 -0.24 0.033 0.02 0.31 

 
 
4.2 Discussion 
We found strong relationships occurring between the Evaporative Stress Index (ESI), total accumulated 
precipitation, and the Normalized Difference Vegetation Index across the entire state of Idaho. The strength 
of which varied based on vegetation cover, but generally these explained landscape-scale biophysical 
responses to drought very well for the state. This result standalone is significant, both in terms of their 
degrees and that these data can be used to help quantify drought risks as they manifest across the state 
(Bushra et al., 2019) as the results presented in this paper indicate that these variables have considerable 
explanatory power for describing biophysical conditions across the entire state. In context, biophysical setting 

can play a role in driving wildfire potential (Wolf et al., 2021), such that integration of these identified 
variables could drastically improve performance of future landscape-scale wildfire modeling. 
 
Incorporating spatially and temporally dynamic processes into wildfire modeling is integral in addressing the 
equally dynamic ecological and climatological interactions that drive wildfires (Loehman et al., 2020). 
Flexibility of models to account for variability in fuel interactions with wildfire weather (Li et al., 2020; Taylor 
et al., 2013) under changing regimes, are vital to achieve proactive land management with resiliency objectives 

(Halofsky et al., 2020). Well documented historical relationships between drier climates and greater wildfire 
incidence (Littell et al., 2016) reinforce the suitability of incorporating current hydrological data into 
predictive wildfire modeling. This conclusion is further reinforced by previous studies which have indicated 
the promise of using these remote-sensing derived hydrological data for predicting drivers of wildfire burn 
potential within prone landscapes (McEvoy et al., 2019; Sazib et al., 2022). Further, the readily available 
nature and power of this data may provide enhanced utility and increased capability for decision-making 
processes in response to real-time wildfire conditions, improving the ability of managers to spatiotemporally 
manage the risks associated with wildfires (Pacheco et al., 2015).  
 
The DEWHM created by the team incorporates both temporal and spatial dynamic capabilities and operates 
on a monthly interval, and in that capacity, outperforms the SWHM. During the validation process, the initial 
expectation was that by incorporating dynamic drought and vegetation indicators into the SWHM, the model 
would have stronger statistical power explaining dynamic wildfire processes. Yet, our validation results 
indicated that this was not the case which might be due to a multitude of reasons. For example, the SWHM 
operates on an annual basis, whereas the DEWHM operates on a monthly basis and to validate the former 
requires using the wildfire occurrence from the beginning of the year to the model's vintage – or month of 
production – instead of the annual wildfire frequency, which was used for the SWHM, which may produce 
discrepancies arising from data availability and sample size. Another factor is that wildfire susceptibility does 
not necessarily correspond to wildfire occurrence, due to the stochastic nature of wildfire ignition. Given this 
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non-linear nature of ignition, areas that are rated low susceptibility could burn given that an ignition event 
occurred, and vice versa. The incorporation of ignition source predictions into the DEWHM could increase 
the utility and statistical validity of the model. However, the SWHM did have the surprising result of negative 
model coefficients which indicates an inverse relationship between increased hazard rating and wildfire 
frequency. This data shows that the SWHM performs counter to its set objective, of predicting wildfire 
occurrence, and as the DEWHM reduced not only in its significance and explanatory power, but also the 
degree of this negative relationship, suggests that incorporation of these data and the DEWHM as created by 
the team is progressing the nature of the model towards a performance aligned with the objectives of our 
partners. 
 
4.3 Limitations and Future Work 
The team identified key areas of future investigation that could enhance the DEWHM’s performance and 
optimize its ability to predict wildfire occurrence across the state. At its core functionality, the model is driven 
by both variable selection and the degree to which these variables are assigned power for describing wildfire 
potential. Determining what aspects of the landscape, and the degree with which they impact interactions of 
drought and wildfire, are a principal area to continue research to increase this performance. In respect to this, 
our investigations and discussions with our partners highlighted key aspects.  

In terms of abiotic landscape features, investigation and incorporation of lightning-based ignition into the 
DEWHMs performance has been identified as a priority variable of potential importance. The role of time in 
drought as it effects soil properties, and potential roles it plays in both wildfire burn potential and associated 
hazards, has also been identified as a potential key variable. Towards this, investigation of additional 
vegetation indices such as NDMI or MSAVI-2 could give these DEWHM greater explanatory power for 
describing impact from drought or the potential for wildfires. Our team spent considerable time 
preprocessing MSAVI-2 data to investigate in TerrSet and potentially incorporate into the model, however, 
we determined that incorporating MSAVI-2 was not feasible for this study due to data gaps in Landsat 8 for 
our study area between 2010–2020.  

Ecological investigations should consider the roles of fuels and wildfire return interval as drivers of wildfire 
burn potential. The role of wildfire disturbance in forests, the nature and impact of disease and pest burdens, 
and the impact of increasing and decreasing grazing animals on fuel loading could also prove valuable 
avenues for future inquiry which could drastically alter the DEWHM’s performance. Human agriculture and 
interactions between irrigated and non-irrigated crops have also been identified as key drivers for wildfire 
burn potential, and should be considered a priority for future research. Further considerations of the impacts 
of human land use could also prove effective enhancements for the DEWHM, including updating the 
Wildland Urban Interface data layer to prioritize areas where humans more often impose greater ignition 
risks. Along with lightning predictions, this prioritization of higher anthropogenic hazard areas and de-
prioritization of lower anthropogenic hazard areas could enhance predictions of wildfire ignitions – as 
human-caused wildfire accounts for 72% of wildfire ignition sources, of which 21% are caused by campfires 

(Idaho Office of Emergency Management, 2018).  

From a technical aspect, adding a level of automation to the DEWHM would increase its efficiency. 
Programming with a language such as Python or R could be used to automate the model with minimal input 
from the user. ArcGIS Pro has a notebook feature that allows for coding directly in the program using the 
same tools as the model builder. Transferring the model over to one of these notebooks would allow for an 
increased level of automation. Earth observation data can be automatically collected over a set time interval 
and added directly into a user’s cart using an application programming interface. Having consistently up-to-
date imagery to plug into an automated model would not only speed up the modeling process but also 
drastically improve its useability. 

The DEWHM would benefit from investigating alternative validation processes for determining its efficacy in 
relation to wildfire occurrence, as some methods may be more appropriate or robust than others. Our team 
validated the DEWHM and SWHM by running regression analyses on interactions of mean wildfire hazard 
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ratings and wildfire occurrence within equal hexbins, which consistently produced low r2 values. This is likely 
a reflection of the complexities of wildfire occurrence, where a combination of events is required for a 
wildfire to ignite. Within this relationship, a primary driver of wildfire occurrence is the presence of an 
ignition source, a stochastic event (Taylor et al., 2013) for which predictions of which was not incorporated 
into the SWHM. Lacking these data, the low statistical power of the model is unsurprising given that its 
efficacy was based on whether the model predicted accurately where wildfires did and did not occur. Potential 
avenues to more appropriately validate the efficacy of the model’s performance would be to perform a field 
validation where hazard areas in Idaho are visually scored by experts. This could provide a sure way of 
determining the efficacy of the model since there are so many variables to account for when sitting behind a 
computer screen, especially since some of these key variables are not well understood. Another method to 
identify key variables could be to integrate the results of longer-term model predictions incorporating diverse 
model compositions, e.g., with diverse array of variable inputs and machine-learning processes (Taylor et al., 
2013) – which have proven robust for landscape scale modeling (Loehman et al., 2020) for the entire state. 
This process may identify variables effective for wildfire occurrence predictions.  
 

5. Conclusions 
The general objectives of this project were to investigate the interactions between drought and wildfire 
occurrence, incorporate these variables to build an DEWHM for the state that has more dynamic capabilities, 
and create a tutorial that describes how to replicate the DEWHM and acquire new data for future input, so 
that our partners can continue to make more informed decisions in regard to wildfire management and post-
wildfire restoration. Towards these, we were able to identify broadly applicable and statistically significant 
variables for the state of Idaho (Table 6). By incorporating these variables in conjunction with the static 
model’s core functionality, we were able to create a wildfire hazard model that dynamically changed in both 
time and space across the state (Figure A3). By utilizing a simplistic modeling framework (Figure A4) this 
method achieved an adaptable process that is able to be augmented to incorporate the inputs of new data 
products and new research, as it is made available. This is a vital component derived from this research, as 
climatological and ecological variability at landscape scales is constant. 
 
To relate this information and model to the partners, our team constructed a detailed tutorial on how to 
rebuild this DEWHM in ArcGIS Pro to help the state decision-makers manipulate and augment the end 
product as desired, and use the product under their own powers to devise updated drought and wildfire 
mitigation plans for Idaho. This newly enhanced model will allow our partners to continually update their 
DEWHM on a monthly basis. This use of dynamic earth observation data provides a snapshot of the wildfire 
potential for the entire state. Aiding our partners in assigning and deploying resources to areas of high 
wildfire potential at a given time. 
 
The changes made to the Idaho SWHM outlined in this report and described in the model tutorial are to be 
used by the partners to create a DEWHM and inform updates to the Idaho Drought Plan. Our team worked 
with the partners throughout the duration of the project to address specific needs, achieve desired model 
functionality, and establish end product ergonomics. Aside from making a model that was more dynamic, 
including the addition of more data from previous years, our team also expanded the study area from the 
Palouse Prairie ecoregion to the entire state of Idaho. Doing so helped the partners facilitate public awareness 
of temporally evolving wildfire hazards, and reduce wildfire risk to human lives, property, and the destruction 
of natural resources through enhanced resource allocation. Our team and the partners ultimately progressed 
towards creating more wildfire-resistant and adapted landscapes. 
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7. Glossary  
ArcGIS Pro – A desktop GIS software that replaces ArcMap. Allowing the user to explore, visualize, and 
analyze data to be able to create 2D maps and or 3D scenes. 
CMK – A pixel-based measure that uses contextual information to correct cross–correlation. 
DEM – Digital Elevation Model; represents the bare ground surface of the Earth, excluding trees, buildings, 
and any other surface objects. 
E0 – Evaporative Demand; represents the potential ET in a non-surface moisture limited system. 
Earth observations – Satellites and sensors that collect information about the Earth’s physical, chemical, and 
biological systems over space and time. 
Ecoregion – An ecologically and geographically defined area which contains characteristic, geographically 
distinct assemblages of natural communities and species. 
EDDI – Evaporative Demand Drought Index; indicates the anomaly of evaporative demand (E0) summed 
over a specified time period and ranked in comparison to previous years before being incorporated into an 
inverse normal approximation.  
ESI – Evaporative Stress Index; indicates the anomaly of ET composited over a specified time window. 
ET – Evapotranspiration; the sum of the evaporation from the land surface plus transpiration from plants. 
ETM – An application within Terrset that supplies the user with a variety of tools for the analysis of trends. 
Fuel Loading – The amount of fuel (usually dry) present in a given area that is quantitively expressed by 
weight of fuel per unit. 
LANDSAT – A series of Earth-observing satellite missions managed jointly by NASA and the U.S. 
Geological Survey. 
Mesic – an environment or habitat containing a moderate amount of moisture. 
MODIS – Moderate Resolution Imaging Spectroradiometer; An instrument abroad NASA’s Terra and Aqua 
satellites. 
MSAVI2 – Minimizes the effect of bare soil on the Soil Adjusted Vegetation Index. Used to detect uneven  
seed growth in a given area exposing the correlation between extreme weather and vegetation health.   
NDVI – Normalized Difference Moisture Index; A spectral vegetation index using near infrared and 
shortwave infrared wavelengths to estimate vegetation moisture. 
TerrSet – A software that allows the user to integrate geographic information and remote sensing software 
for the analysis of geospatial information. 
Vegindex – a tool that allows the calculation of one or more vegetation indices using the reflectance data 
within the input file. 
Xeric – an environment or habitat containing little moisture; very dry. 
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9. Appendices 
Appendix A 

 

 
Figure A1. The Idaho Department of Lands most recent version of wildfire hazard model as rebuilt by the 

previous DEVELOP term and unenhanced by remotely sensed drought metrics 
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Figure A2. Comparison between raster images generated by the static Idaho Department of Lands Wildfire 

Hazard Model (a), and the NASA DEVELOP team drought-enhanced wildfire models (b, c). The latter two 
models’ performance reflects real-world drought conditions on October 15, 2010, and illustrates the dynamic 

capability of incorporating remotely sensed data into these models  
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Figure A3. Temporal and spatial resolution of the DEWHM for the year 2019. Each return interval of the 
remotely-sensed product produces a new hazard rating that reflects conditions as they existed during this 

period 
 
 

Figure A4. The ArcGIS ModelBuilder workflow as produced by this term’s team to create drought-enhanced 
wildfire hazard model (DEWHM). This workflow is to be related to the partners as tutorial, so that it can be 

recreated 
 

Table A1 
Accuracy statistics for the previous term's drought-enhanced models for the study years the dry year 2015 and the wet year 2016. 
Note that True Positive% and False Negative% for 2016 models rounded to 0.0% at one decimal place  

Model True Positive % True Negative % False Positive % False Negative % 

2015 Original 3.7% 23.8% 72.0% 0.5% 

2015 EDDI 3.5% 25.5% 70.2% 0.7% 

2015 ESI 2.9% 40.5% 55.3% 1.4% 

2015 NDVI 3.0% 41.3% 54.7% 1.3% 

2016 Original 0.0% 23.8% 76.2% 0.0% 
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2016 EDDI 0.0% 42.2% 57.8% 0.0% 

2016 ESI 0.0% 42.2% 57.8% 0.0% 

2016 NDVI 0.0% 46.7% 53.2% 0.0% 
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Appendix B 
 

Figure B1. Elevational distribution of forestland cover across the state of Idaho. The median and mean value 
within these normally distributed data is both approximately 1715 meters, illustrated with a horizontal line 

 

Table B1 
R2 values from Linear Modeling in Terrset Earth Trends Modeler using the Normalized Vegetation Index a dependent 
variable, conducted for Forestland and Rangeland landcover over the state of Idaho 

 

Independent Variable Monthly Time Lag 
Rangeland Forestland 

r2 value  r2 value  

EDDI 0 0.13 0.13 

ESI 0 0.69 0.29 

Precipitation 0 0.19 0.24 

Maximum Temperature 0 0.33 0.24 

Minimum Temperature 0 0.43 0.30 

EDDI 1 0.15 0.15 

ESI 1 0.26 0.26 

Precipitation 1 0.29 0.24 

Maximum Temperature 1 0.16 0.15 

Minimum Temperature 1 0.19 0.15 

EDDI 2 0.1 0.17 

ESI 2 0.39 0.39 

Precipitation 2 0.43 0.37 

Maximum Temperature 2 0.16 0.15 

Minimum Temperature 2 0.2 0.23 

EDDI 3 0.1 0.10 

ESI 3 0.18 0.11 
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Precipitation 3 0.68 0.31 

Maximum Temperature 3 0.14 0.14 

Minimum Temperature 3 0.2 0.21 

EDDI 4 0.15 0.15 

ESI 4 0.1 0.12 

Precipitation 4 0.65 0.51 

Maximum Temperature 4 0.16 0.11 

Minimum Temperature 4 0.25 0.15 

EDDI 5 0.14 0.14 

ESI 5 0.1 0.12 

Precipitation 5 0.72 0.42 

Maximum Temperature 5 0.1 0.08 

Minimum Temperature 5 0.13 0.11 

 
Table B2.  

R2 values from Linear Modeling in Terrset Earth Trends Modeler using the Normalized Difference Vegetation Index (NDVI) 
conducted for low elevation and high elevation forestland landcover for the state of Idaho 

Independent 
Variable 

Monthly 
Time Lag 

High Elevation 
Forestland 

Low Elevation 
Rangeland 

r2 value r2 value 

EDDI 0 0.08 0.13 

ESI 0 0.24 0.33 

Precipitation 0 0.18 0.24 

Maximum 
Temperature 

0 0.16 0.16 

Minimum 
Temperature 

0 0.15 0.18 

EDDI 1 0.1 0.10 

ESI 1 0.17 0.16 

Precipitation 1 0.13 0.07 

Maximum 
Temperature 

1 0.14 0.12 

Minimum 
Temperature 

1 0.1 0.10 

EDDI 2 0.9 0.13 

ESI 2 0.13 0.16 

Precipitation 2 0.37 0.29 

Maximum 
Temperature 

2 0.12 0.14 

Minimum 
Temperature 

2 0.16 0.21 

Precipitation 3 0.23 0.16 

Precipitation 4 0.37 0.26 

Precipitation 5 0.42 0.32 
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Appendix C 

Table 1C 

R2 results from the TerrSet Earth Trends Modeler Series Trend Analysis conducted for remotely sensed variables across the state 
of Idaho 

Data Layer 
Highest r2 Value 

EDDI 0.06 

ESI 0.06 

NDVI 0.14 

Precipitation 
0.05 

Minimum in Temperature 0.12 

Maximum Temperature 0.25 

EDDI (anomaly) 0.09 

ESI (anomaly) 0.08 

NDVI (anomaly) 0.42 

Precipitation (anomaly) 0.05 

Minimum in Temperature (anomaly) 0.25 

Maximum Temperature (anomaly) 0.25 

Table 2C.  
Results of TerrSet Earth Trends Modeler Linear Modeling using NDVI as the dependent variable. 
 

Earth Trends Modeler Linear Modeling 

EDDI (anomaly)   r2 value 

Time Lag 
(months) 

0 0.13 

1 0.15 

2 0.13 

ESI (anomaly) 

Time Lag 
(months) 

0 0.69 

1 0.26 
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2 0.39 

Precipitation (anomaly) 

Time Lag 
(months) 

0 0.24 

1 0.15 

2 0.43 

3 0.68 

Minimum Temperature (anomaly) 

Time Lag 
(months) 

0 0.22 

1 0.17 

2 0.21 

Maximum Temperature (anomaly) 

Time Lag 
(months) 

0 0.16 

1 0.14 

2  0.16 

 


